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Abstract
I show that the result of the paper by Neves et al (2006 J. Phys. A: Math. Gen.
39 L293–6) is a special case of the well-known ‘Gegenbauer finite integral’.

PACS number: 02.30.Gp

The authors of recent paper [1] gave a detailed proof of the integral formula for the product of
the associated Legendre polynomial and Bessel function:∫ π

0
dθ sin θ exp(iR cos α cos θ)P m

n (cos θ)Jm(R sin α sin θ) = 2in−mP m
n (cos α)jn(R), (1)

where

jn(z) =
√

π

2z
Jn+1/2(z). (2)

Their motivation was that ‘this integral is not shown in any Integral Tables, nor in calculation
packages such as Mathematica, and we do not know of any other report of this result’ [1].

As a matter of fact, formula (1) is a special case of the formula containing the product of
the Gegenbauer polynomial and Bessel function∫ π

0
dθ(sin θ)ν+1/2 exp(iz cos ψ cos θ)Cν

r (cos θ)Jν−1/2(z sin ψ sin θ)

=
(

2π

z

)1/2

ir (sin ψ)ν−1/2Cν
r (cos ψ)Jν+r (z) (3)

if one takes into account the known relation (see, e.g., [2])

P m
n (cos θ) = (2m)!

m!2m
(−sin θ)mC

m+1/2
n−m (cos θ). (4)

Formula (3) can be found in Watson’s book [3] (equation (12.14.1) on page 379). Watson
named it ‘the Gegenbauer finite integral’ and gave references to the original papers by
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Gegenbauer of 1877 and 1882. It is given also in [4] (equation (7.8(12)) on page 57).
The real and imaginary parts of the integral (3) can be found in [2] (equations (7.333.1) and
(7.333.2)).
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[4] Erdélyi A (ed) 1953 Bateman Manuscript Project: Higher Transcendental Functions vol II (New York: McGraw-

Hill)

http://dx.doi.org/10.1088/0305-4470/39/18/L06

	
	References

